SELECTIVE KILLING OF HUMAN T CELL LYMPHOTROPIC VIRUS TYPE I-TRANSFORMED CELL LINES BY A DAMAVARICIN Fc DERIVATIVE

Shin-ichi Ito, Naoki Yamamoto^a, Kikuo Nomoto^b, Kazuya Sasaki[°] and Kazukiyo Onodera^d,*

Shin-Etsu Chemical Co., Ltd., Ohtemachi, Tokyo 100, Japan ^aDepartment of Virology and Parasitology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755, Japan ^bDepartment of Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812, Japan ^cKaken Pharmaceutical Co., Ltd., Tokyo 113, Japan ^dDepartment of Agricultural Chemistry, The University of Tokyo, Tokyo 113, Japan

(Received for publication, November 18, 1988)

n-Pentyl ether of damavaricin Fc (*n*-pentyl DvFc) preferentially killed human T-cell lymphotropic virus type I (HTLV-I)-transformed cell lines. The mechanism of action of the drug was investigated using MT-4 cells. Cytotoxic action was diminished by the removal of *n*-pentyl DvFc from the culture or by the addition of sulfhydryl compounds such as 2-mercaptoethanol and dithiothreitol. The killing activity of *n*-pentyl DvFc was also diminished by membrane-acting agents including quinidine and diphenylhydantoin. Influx and subsequent efflux of Ca²⁺ were observed when either HTLV-I infected (MT-4 cells) or uninfected cells were treated with *n*-pentyl DvFc. An efflux of K⁺ was observed in HTLV-I infected MT-4 cells immediately after the exposure of the cells to *n*-pentyl DvFc. The K⁺ efflux, however, was not observed in the uninfected T cells. *n*-Pentyl DvFc seems to act primarily on the cell surface of MT-4 cells, leading to the perturbation of membrane function. The restoration of cell growth, however, is critically dependent on the presence of dithiothreitol and 2-mercaptoethanol, implying a role for a free sulfhydryl group in the killing activity.

Damavaricin Fc is an atropisomeric mixture of two compounds produced by treatment of streptovaricin C with oxygenated concentrated ammonia - methanol. Damavaricin Fc, in which the ansa bridge lies above the aromatic nucleus, has the P helicity as well as streptovaricin C, whereas atropisodamavaricin Fc, in which the ansa bridge lies below the aromatic nucleus, has the M helicity (Fig. 1)¹⁾. To avoid complicating nomenclature, hereafter we will use damavaricin Fc to refer to this atropisomeric mixture. Streptovaricins belong to the ansa-ring class of antibiotics and in addition to antibiotic activity, they also inhibit retrovirus reverse transcriptase activity *in vitro*. We have previously reported the biological activities of several derivatives of damavaricin Fc including those which have different alkyl ether linkage at the C-19 position of the naphthoquinone ring of the molecule. Some of these derivatives inhibited proliferation of a mouse retrovirus¹⁾.

Recently, it has been discovered that several retroviruses can cause severe human diseases^{2~4)}. Human T-cell lymphotropic virus type I (HTLV-I) is the causative agent of adult T-cell leukemia⁵⁾, one of the most aggressive human leukemias, as well as HTLV-I associated myelopathy (HAM)⁶⁾, Fig. 1. Structure of damavaricin Fc.

Damavaricin C

Damavaricin Fc

THE JOURNAL OF ANTIBIOTICS

VOL. XLII NO. 5

and tropical spastic paraparesis⁷). However, no effective therapy for HTLV-I-related disease is currently known.

We wished to determine whether damavaricin Fc derivatives would inhibit the growth of HTLV-I-transformed cells. In the present study, we describe the selective killing of HTLV-I-transformed cells by the *n*-pentyl ether of damavaricin Fc (*n*-pentyl DvFc), and its mode of action.

Materials and Methods

Cells

Peripheral blood lymphocytes (PBL) were obtained after Ficoll-Hypaque centrifugation of peripheral blood from normal healthy donors. The established cell lines used in this study were the HTLV-I-negative MOLT-4⁸), SKW, and NALM16 cells⁹; and the HTLV-I-positive T-cell lines MT-1¹⁰, MT-2, MT-4¹¹, 467¹²), KAN¹³ and TLOml cells¹⁴). FUK cells were established from PBL of an adult T-cell leukemia (ATL) patient by culturing with interleukin-2 (IL-2) (unpublished). They were cultured in RPMI 1640 medium (Gibco Co.) supplemented with 10% or 20% fetal calf serum (FCS) (M.A. Bioproduct, Walkersvile, MD), benzylpenicillin (100 u/ml) and streptomycin (100 μ g/ml).

Chemicals

n-Pentyl DvFc was prepared as previously described¹⁾. 5,5-Diphenylhydantoin (5,5-DPH) and quinidine hydrochloride were purchased from Sigma Chemical Company. The radioactive compounds [*methyl*-³H]thymidine (20 Ci/mmol), [5-⁸H]uridine (30 Ci/mmol), L-[4,5-³H]leucine (63 Ci/mmol), ⁴⁵Ca²⁺ (40 mCi/mg calcium) and ⁸⁶Rb⁺ (8 mCi/mg rubidium) were obtained from Amersham Co., Ltd. Dithiothreitol and 2-mercaptoethanol were obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).

Sensitivity of the Cells to n-Pentyl DvFc

1 ml of cell suspension $(6 \times 10^5 \text{ cells/ml})$ was added to 1 ml of medium containing various concentration of *n*-pentyl DvFc, and the mixtures were incubated at 37°C in a CO₂ incubator. Growth and viability of the cells were monitored by cell counting and by Trypan blue dye exclusion.

Assay for Alkaline Phosphodiesterase

MT-4 cells were ruptured in ice-cold phosphate-buffered saline (PBS, 10 mM potasium phosphate, pH 7.4, 135 mM NaCl) with a Dounce homogenizer and the extract was used as a source of a typical sulfhydryl (SH) enzyme. The reaction mixture (1 ml) contained: Tris-HCl (pH 9.0) 50 mM, MgCl₂ 5 mM, thymidine-5-monophosphate-*p*-nitrophenyl ester 1 mM, extract from 5×10^6 MT-4 cells, and various concentrations of *n*-pentyl DvFc. After incubation at 37° C for 45 minutes, the enzyme reaction was terminated by the addition of 300 μ l of TCA. The deproteinized supernatant was added to 400 μ l of 2.5 N NaOH, and the optical density at 400 nm was compared with standard *p*-nitrophenol to determine the amount of substrate hydrolyzed.

Biosynthesis of DNA, RNA, and Proteins

MT-4 cells $(3 \times 10^{5} \text{ cells/ml})$ were incubated with various concentration of *n*-pentyl DvFc in culture medium (total volume; 400 μ l) containing labeled precursors ([³H]thymidine, [³H]uridine, or [⁸H]leucine, all at 4 μ Ci/ml) for 40 minutes. Cells were washed with PBS, and treated with 400 μ l of 10% cold TCA. Acid-insoluble fractions were collected on glass fiber filters (Advantec GC50) and washed with 5% cold TCA, and the radioactivity was counted.

Rubidium Efflux Measurements

HTLV-I infected (MT-4) or uninfected (MOLT-4) cells $(2.4 \times 10^6 \text{ cells/ml})$ were loaded overnight with 10 μ Ci/ml of ³⁶Rb⁺ in RPMI 1640 containing 10% FCS. Cells were diluted 10-fold into nonradioactive medium, spun down (400×g, 5 minutes) and resuspended in the same medium at 6×10⁶ cells/ml. *n*-Pentyl DvFc (5 μ g to 3×10⁵ cells) was added to the culture and incubated at 37°C in a CO₂ incubator. At the indicated times, 100 μ l of cell suspension was removed and layered over 500 μ l of a corn oil and dibutylphthalate (3:10) mixture¹⁵⁾, and centrifuged in an Eppendorf microfuge (15,000 rpm, 40 seconds). The tip of tube containing the cell pellet was cut off and the radioactivity was determined.

Calcium Flux Measurement

MT-4 or MOLT-4 cells $(6 \times 10^8 \text{ cells/ml})$ were incubated in the presence of ${}^{45}\text{CaCl}$ (50 μ Ci/ml). After 10 minutes, *n*-pentyl DvFc (5 μ g to 3×10^5 cells) was added to the culture. At the indicated times, 120 μ l of cell suspension was transferred into 1 ml of simplified medium (NaCl 145 mM, KCl 5 mM, Na₂HPO₄ 1 mM, MgSO₄ 0.5 mM, glucose 5 mM, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 10 mM, ethylene glycol bis(2-aminoethylether)tetraacetic acid (EGTA) 1 mM, pH 7.4). Cells were spun down (10,000 \times g, 30 seconds) and resuspended in simplified medium, transferred to a membrane filter (pore size, 0.45 μ m), washed, and the radio-activity was determined.

Results

Sensitivity of HTLV-I-transformed Cells to *n*-Pentyl DvFc

All HTLV-I-positive cell lines tested were highly sensitive to *n*-pentyl DvFc as compared

Fig. 2. Effect of *n*-pentyl DvFc on the growth of MT-4 cell.

The concentrations of DvFc were 0 (\bullet), 1 (\bigcirc), 5 (\blacktriangle), 10 (\triangle), and 25 (\Box) μ g/ml.

MT-4 cells (4×10^5 cells/ml) were incubated in the presence of *n*-pentyl DvFc. Cell growth and viability were monitored by Trypan blue dye exclusion.

Table 1. Effect of n-pentyl DvFc on cell growth.	
Cell lines	Minimum concentration of <i>n</i> -pentyl DvFc inhibiting cell growth by 50% (µg/ml) ^a
PBL (resting)	44
PBL (PHA-activated)	32
HTLV-I-negative cell lines	
MOLT-4	16
SKW	25
NALM16	27
HTLV-I-positive T-cell lines	
FUK	1
467	3
KAN	6
TLOml	1
MT-1	4
MT-2	7
MT-4	2

^a The values present the concentration of *n*-pentyl DvFc showing 50% cell growth compared with DvFc-free control after incubation for 72 hours.

MT-4 cells $(3 \times 10^5$ cells/ml) were incubated in the presence of *n*-pentyl DvFc $(5 \ \mu g/ml)$. At indicated times (presented by arrow heads), viable cells were determined by Trypan blue dye exclusion (\bullet), 1 ml of culture was taken and cells were washed twice with 1 ml of drug-free medium by centrifugation ($400 \times g$, 3 minutes). Cells were resuspended in medium, incubated for 46 hours, and viable cells were determined (\bigcirc).

Fig. 4. Recovery of cell killing by n-pentyl DvFc with SH-compound.

MT-4 cells (3×10^5 cells/ml) were incubated in the presence of *n*-pentyl DvFc ($5 \mu g/ml$) and various concentration of dithiothreitol (A) or 2-mercaptoethanol (B).

Incubation time (days)

Cell growth and viability were monitored with the Trypan blue dye exclusion test. The values in the figure are the concentration (μ M) of SH-compound.

with HTLV-I-negative cell lines (Table 1). Among the sensitive cell lines, MT-4 was chosen to study the mode of action of *n*-pentyl DvFc. To determine the time course of cytotoxic action of n-pentyl DvFc, logarithmically growing MT-4 cells were exposed to various concentrations of *n*-pentyl DvFc and the cell number was measured at various times. MT-4 cells showed no growth in the presence of *n*-pentyl DvFc at concentrations of more than 5 μ g/ml under these conditions (Fig. 2). However, these MT-4 cells were viable for at least 12 hours after exposure to *n*-pentyl DvFc (5 μ g/ml) as indicated by the following experiments. MT-4 cells were incubated in the presence of *n*-pentyl DvFc (5 μ g/ml), and at various times, were washed with n-pentyl DvFc-free medium, and were incubated in the

Fig. 5. Inhibitory effect of *n*-pentyl DvFc on the membrane bound enzyme, alkaline phosphodiesterase of MT-4 cells.

MT-4 cells were ruptured and the extract was used as a source of SH enzyme.

absence of the drug. The washed cells were able to resume growth in drug-free medium even after 42 hours (Fig. 3). Similar results were obtained in experiments using $10 \,\mu g/ml$ of *n*-pentyl DvFc. These results imply that *n*-pentyl DvFc binds to MT-4 cells reversibly.

Effect of Sulfhydryl Compounds

It was reported that the activity of naphthomycin, an antibiotic of the ansamycin group, was prevented by SH compounds¹⁶⁾. Therefore we examined whether the cytotoxic action of n-pentyl

DvFc might also be prevented by SH compounds. Both dithiothreitol and 2-mercaptoethanol diminished the action of *n*-pentyl DvFc on MT-4 in a dose-dependent manner (Fig. 4). These results indicate that *n*-pentyl DvFc may act on the SH groups of proteins. To confirm the action of *n*-pentyl DvFc on the SH groups of proteins, we measured the inhibitory effect of *n*-pentyl DvFc on alkaline phosphodiesterase, a known SH enzyme located in the cell membrane of lymphocytes¹⁷). *n*-Pentyl DvFc inhibited this enzymic activity *in vitro* (Fig. 5). 50% inhibition was seen at a *n*-pentyl DvFc

Fig. 6. Effect of membrane-acting agents on the cytotoxic activity of *n*-pentyl DvFc in MT-4 cells.

Logarithmically growing MT-4 cells were incubated for 24 hours in the presence of both *n*-pentyl DvFc (5 μ g/ml) and membrane-acting agents (\bigcirc), or of the later only (\bullet).

(A) Effect of DPH. 100% corresponds to 7.2×10^5 cells/ml. (B) Effect of quinidine. 100% corresponds to 8.8×10^5 cells/ml.

Logarithmically growing MT-4 (HTLV-I infected) (A) and MOLT-4 (uninfected) (B) cells were loaded with ${}^{86}Rb^+$, and cellular ${}^{86}Rb^+$ was measured as described in the Materials and Methods.

concentration of $10 \,\mu$ g/ml. These results suggest that *n*-pentyl DvFc may react reversibly with the SH groups of the membrane proteins of MT-4 cells.

Effect of *n*-Pentyl DvFc on Macromolecular Synthesis

To determine the effect of *n*-pentyl DvFc on macromolecular synthesis, we measured the incorporation of radiolabeled precursors by MT-4 cells into DNA ([³H]thymidine), RNA ([³H]uridine), and protein ([³H]leucine). DNA synthesis was inhibited by *n*-pentyl DvFc in a dose dependent manner (data not shown). Neither RNA nor protein synthesis was affected significantly.

Reversal of the Action of *n*-Pentyl DvFc by Membrane-acting Agents

The results described above indicate that *n*pentyl DvFc might act directly on the cell membrane of MT-4 cells. We investigated the effect of membrane-active agents such as quinidine and DPH. These drugs are a K^+ channel

- Fig. 8. Effect of *n*-pentyl DvFc on the permeability of calcium ion.
 - *n*-Pentyl DvFc-free control, \bigcirc *n*-pentyl DvFc-treated.

Logarithmically growing MOLT-4 (A) and MT-4 (B) cells were incubated in the presence of 4^{3} CaCl for 10 minutes, and *n*-pentyl DvFc was added to the culture. At indicated times, intracellular 4^{5} Ca was measured as described in the Materials and Methods.

blocker and an anticonvulsant, respectively. Both types of drugs overcame the inhibitory effects of *n*-pentyl DvFc (Fig. 6). However, another K⁺ channel blocker, 4-aminopyridine (4-AP) did not show this effect. Verapamil, a Ca²⁺ channel blocker, was also effective at concentration of 10^{-7} to 10^{-4} M (data not shown).

Effect of n-Pentyl DvFc on Ion Permeability

To confirm whether *n*-pentyl DvFc actually caused K⁺ efflux in MT-4 cells, ⁸⁶Rb⁺-loaded MT-4 cells were exposed to *n*-pentyl DvFc and the cellular ⁸⁶Rb level was examined. Efflux of 40% of cellular ⁸⁶Rb was observed within 6 minutes after the exposure of cells to *n*-pentyl DvFc. Efflux of ⁸⁶Rb was not observed in the HTLV-I negative MOLT-4 cells under the same condition (Fig. 7). The two drugs which reversed the killing of HTLV-I infected cells by *n*-pentyl DvFc, DPH¹⁸⁾ and verapamil¹⁹⁾, are known to inhibit Ca²⁺ influx into cells. Therefore Ca²⁺ influx into MT-4 cells might be changed by the action of *n*-pentyl DvFc. MT-4 cells were loaded with ⁴⁵Ca and then exposed to *n*-pentyl DvFc in the presence of ⁴⁵Ca²⁺. There was a transient increase in intracellular ⁴⁵Ca ion followed by a decrease within 10 minutes (Fig. 8). Since this phenomenon was also observed in MOLT-4 cells, it cannot be responsible for the selective killing of MT-4 cells.

Discussion

We have been engaged in a series of studies to elucidate the relationship between the structure and the biological activity of streptovaricin C derivatives (damavaricin Fc and damavaricin C)^{1,20~22}).

The damavaricin Fc as well as damavaricin C were produced from streptovaricin C^{23} . Whereas damavaricin C retained antibacterial activity, damavaricin Fc lost it¹⁾. It is suggested that the lactonering formed between C-7 and C-10 is closely related to the loss of antibacterial activity. The low toxicity of damavaricin Fc has been demonstrated on mammalian cells *in vitro*¹⁾ and also in animals when orally administered (unpublished data). Therefore, damavaricin Fc may have a potential for the therapy of adult T cell leukemia or HTLV-I-related diseases. This drug may be applicable to the treatment of ATL by adoptive immunotherapy such as lymphokine-activated killer cells²⁴⁾.

Since *n*-pentyl DvFc has shown the most effective inhibitory activity against focus formation by mouse sarcoma virus/mouse leukemia virus complex¹⁾, we selected this derivative for study. We have shown the selective killing of the HTLV-I-transformed cells by n-pentyl DvFc, and have given circumstancial evidence for the mechanism of cell-killing. The results suggest that the drug acts on the cell membrane. It has been reported that HTLV-I-transformed cells have an altered cell surface: They express the IL-2 receptor²⁵⁾ and Ia antigen¹⁴⁾. In the present study, we demonstrated that K^+ efflux occured in HTLV-I-transformed cells immediately after exposure to n-pentyl DvFc. Since K⁺ efflux was specific for HTLV-I infected cells, K⁺ efflux seemed to be an essential event at an early phase in the course of the killing action. The killing action by *n*-pentyl DvFc, however, was not reversed by 4AP, which is a blocking agent of voltage-sensitive K⁺ channel²⁶. This suggests that the K^+ efflux caused by *n*-pentyl DvFc was not through the voltage-sensitive channel but through the Ca2+-dependent one. In fact, Ca2+ influx seems to occur in MT-4 cells immediately after the addition of DvFc, but MOLT-4 cells also showed a similar pattern of Ca²⁺ influx, suggesting that drug induced Ca^{2+} influx was not specific to infected cells. We speculate that if the level of intracellular Ca^{2+} was similar between these two cell lines (MT-4 and MOLT-4) after exposure to n-pentyl DvFc, the Ca^{2+} -dependent K⁺ channel of MT-4 cell is more sensitive to the level of Ca^{2+} than that of MOLT-4 cell.

What is the target site for the action of *n*-pentyl DvFc? From the results in which the killing is prevented by the removal of *n*-pentyl DvFc or by the addition of SH-compounds, we consider that *n*pentyl DvFc interacts with membrane proteins containing SH groups in MT-4 cells. HTLV-I antigens expressed on the cell membrane are unlikely to be the target molecules, because TLOml cells which are also HTLV-I-infected but do not express HTLV-I antigen *in vitro*¹⁴⁾ were also killed by *n*-pentyl DvFc. DNA synthesis was inhibited after addition of DvFc to HTLV-I infected cells. The inhibitory activity of *n*-pentyl DvFc on SH enzymes may effect DNA synthesis, but this is probably a secondary effect.

From the results described above, we conclude that *n*-pentyl DvFc acts directly on the membrane and that the membranes of HTLV-I-transformed cells respond differently from the membranes of uninfected cell lines. The precise mechanism is not clear at this moment. The relationship between the Ca^{2+} channel and the K⁺ channel in HTLV-I-transformed T cells as compared to untransformed cells appears to be different.

References

- ONODERA, K.; A. HIRAGUN, M. SATO, H. MITSUI & K. SASAKI: Inhibition of focus formation of rat cells by mouse sarcoma virus by damavaricin Fc derivatives. J. Antibiotics 32: 545~547, 1979
- POIESZ, B. J.; F. W. RUSCETTI, A. F. GAZDER, P. A. BUNN, J. D. MINNA & R. C. GALLO: Detection and isolation of type-C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sic. U.S.A. 77: 7415~7419, 1980
- 3) KALYANARAMAN, V. S.; M. G. SARNGADHARAN, M. ROBERT-GUROFF, I. MIYOSHI, D. BLAYNEY, D. GOLDE & R. C. GALLO: A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science 218: 571~573, 1982
- 4) BARRÉ-SINOUSSI, F.; J. C. CHERMANN, F. REY, M. T. NUGEYRE, S. CHAMARET, J. GRUEST, C. DAUGUET, C. AXLER-BLIN, F. VÉZINET-BRUN, C. ROUZIOUX, W. ROZENBAUM & L. MONTAGNIER: Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868 ~ 871, 1983
- 5) YOSHIDA, M.; I. MIYOSHI & Y. HINUMA: Isolation and characterization of human adult T-cell leukemia and its implication in the disease. Proc. Natl. Acad. Sci. U.S.A. 79: 2031 ~ 2035, 1982

- 6) OSAME, M.; K. USUKU, S. IZUMO, N. IJICHI, H. AMITANI, A. IGATA, M. MATSUMOTO & M. TARA: HTLV-I associated myelopathy, a new clinical entity. Lancet 1986-I: 1031~1032, 1986
- ROMAN, G. C.; P. S. SPENCER, B. S. SCHOENBERG, D. MADDEN, J. SEVER, J. HUGON & A. LUDOLPH: Tropical spastic paraparesis: HTLV-I antibodies in patients from the Seychelles. N. Engl. J. Med. 316: 51, 1987
- MINOWADA, J.; T. OHMURA & G. E. MOORE: Rossete-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J. Natl. Cancer Inst. 49: 891~895, 1972
- MINOWADA, J.: Production of cytokines by human hematopoietic cells. In Mammalian Cell Culture. Eds., M. SHIKITA & I. YAMANE, pp. 141~162, Soft Science Publication, Tokyo, 1985
- MIYOSHI, I.; I. KUBONISHI, M. SUMIDA, S. HIRAKI, T. TSUBOTA, I. KIMURA, K. MIYAMOTO & J. SATO: A novel T-cell line derived from adult T-cell leukemia. Gann 71: 155~156, 1980
- 11) MIYOSHI, I.; I. KUBONISHI, S. YOSHIMOTO, T. AKAGI, Y. OHTSUKI, Y. SHIRAISHI, K. NAGATA & Y. HINUMA: Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294: 770~771, 1981
- 12) KOYANAGI, Y.; S. HARADA, M. TAKAHASHI, F. UCHINO & N. YAMAMOTO: Selective cytoxicity of AIDS virus infection towards HTLV-I-transformed cell lines. Int. J. Cancer 36: 445~451, 1985
- YAMAMOTO, N.; M. OKADA, Y. KOYANAGI, M. KANNAGI & Y. HINUMA: Transformation of human leukocytes by cocultivation with an adult T cell leukemia virus producer cell line. Science 217: 737~739, 1982
- 14) SUGAMURA, K.; M. FUJII, M. KANNAGI, M. SAKITANI, M. TAKEUCHI & Y. HINUMA: Cell surface phenotypes and expression of viral antigens of various human cell lines carrying human T-cell leukemia virus. Int. J. Cancer 34: 221~228, 1984
- GRINSTEIN, S.; C. A. CLARKE, A. DUPRE & A. ROTHSTEIN: Volume regulation by human lymphocytes. Role of calcium. J. Gen. Physiol. 80: 801~823, 1982
- 16) OKABE, T.; B. D. YUAN, F. ISONO, I. SATO, H. FUKAZAWA, T. NISHIMURA & N. TANAKA: Studies on antineoplastic activity of naphthomycin, a naphthalenic ansamycin, and its mode of action. J. Antibiotics 38: 230~235, 1985
- 17) SUGIMOTO, Y.; T. NISHIMURA, H. SUZUKI & N. TANAKA: Alteration of membrane-associated enzymes in drug-resistant sublines of mouse lymphoblastoma L5178Y cells. J. Antibiotics 34: 1200~1205, 1981
- 18) PINCUS, J. H. & S. H. LEE: Diphenylhydantoin and calcium. Arch. Neurol. 29: 239~244, 1973
- 19) GRAY, L. S.; J. R. GNARRA, J. H. RUSSELL & V. H. ENGELHARD: The role of K⁺ in the regulation of the increase in intracellular Ca²⁺ mediated by the T-lymphocyte antigen receptor. Cell 50: 119~127, 1987
- SASAKI, K.; T. NAITO, T. SATOMI & K. ONODERA: Chemical modification of streptovaricin C. I. 19-O-Substituted damavaricin C. J. Antibiotics 29: 147~154, 1976
- ONODERA, K.; Y. AOI & K. SASAKI: Inhibition of tumor cell growth in vitro by damavaricin C derivatives. Agric. Biol. Chem. 40: 1381~1385, 1976
- 22) ONODERA, K.; Y. AOI & K. SASAKI: Inhibition of tumor growth *in vivo* by damavaricin C derivatives. Agric. Biol. Chem. 40: 2209~2212, 1976
- 23) RINEHART, Jr., K. L.; F. J. ANTOSZ, P. V. DESHMUKH, K. KAKINUMA, P. K. MARTIN, B. I. MILAVETZ, K. SASAKI, T. R. WITTY, L. H. LI & F. REUSSER: Identification and preparation of damavaricins, biologically active precursors of streptovaricins. J. Antibiotics 29: 201 ~ 203, 1976
- 24) MULÉ, J. J.; S. SHU, S. L. SCHWARZ & S. A. ROSENBERG: Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487~1489, 1984
- 25) DEPPER, J. M.; W. LEONARD, M. KRONKE, T. A. WALDMANN & W. C. GREENE: Augmented T-cell growth factor receptor expression in HTLV-I infected human leukemic T-cell. J. Immunol. 133: 1691~1695, 1984
- 26) HERMANN, A. & A. L. F. GORMAN: Effects of 4-aminopyridine on potassium currents in a molluscan neuron. J. Gen. Physiol. 78: 63~86, 1981